
Communication Lower Bounds
for Programs that Access Arrays

Nicholas Knight,
Michael Christ, James Demmel, Thomas Scanlon, Katherine Yelick

UC-Berkeley

DEGAS Retreat
June 3, 2013

We acknowledge funding from Microsoft (award #024263) and Intel (award #024894), and matching funding by UC Discovery
(award #DIG07-10227), with additional support from ParLab affiliates National Instruments, Nokia, NVIDIA, Oracle, and

Samsung, and support from MathWorks. We also acknowledge the support of the US DOE (grants DE-SC0003959,
DE-SC0004938, DE-SC0005136, DE-SC0008700, DE-AC02-05CH11231, DE-FC02-06ER25753, and DE-FC02-07ER25799),

DARPA (award #HR0011-12-2-0016), and NSF (grant DMS-0901569).

Communication is expensive!

Communication means moving data

Serial communication = moving data across memory hierarchy

Parallel communication = moving data across network

Communication usually dominates runtime, energy cost
⇒ Avoid communication to save time and energy!
How much can you avoid? Lower bound on data movement
Attain lower bound⇒ Communication-optimal algorithm

2

Outline

1 Avoiding Communication in Linear Algebra
Lower bounds for matrix multiplication. . .
. . . attainable by tiling
Lower bounds for linear algebra (. . . attainable?)

2 Beyond Linear Algebra: Affine Array References
E.g., A(i + 2j ,3k + 4)
Extends previous lower bounds to larger class of programs.
Lower bounds are computable.
Matching upper bounds (i.e., optimal algorithms) in special case:
linear algebra, tensor contraction, direct N–body, database join,
etc. (when array references pick a subset of the loop indices)
Ongoing work addresses attainability in the general case.

First Lower Bound: Matrix Multiplication (“Matmul”)

A,B,C are N–by–N matrices.

C := C + A · B ⇒

for i = 1 : N,
for j = 1 : N,

for k = 1 : N,
C(i , j) += A(i , k) ∗ B(k , j)

Theorem ([HK81])
Consider computing C + A · B as above (in serial), with any order on
the N3 iterations. A processor must move

Words Moved = Ω

(
#iterations

(fast memory size)1/2

)
= Ω

(
N3

M1/2

)
words between slow memory (of unbounded capacity) and fast
memory (of size M words).

3

First Lower Bound: Geometric Intuition [ITT04] (1/2)

for i = 1 : N, for j = 1 : N, for k = 1 : N
C(i , j) += A(i , k) ∗ B(k , j)

Idea Bound volume(S) by the areas of the shadows S casts

x	

z	

z	

y	

y	

x	

S	
 =	
 {(i,j,k)}	

C	

A	

B	

1	
 N	

N	

N	

i	

k	

1	

j	

SA	

SC	

SB	

|S| = x · y · z = (xz · zy · yx)1/2

= |SA|1/2 · |SB|1/2 · |SC |1/2

S	
 =	
 {(i,j,k)}	

C	

A	
 B	

1	
 N	

N	

N	

i	

k	

1	

j	

SC	

SB	

SA	

|S| ≤ |SA|1/2 · |SB|1/2 · |SC |1/2

by Loomis-Whitney ineq. [LW49]

4

First Lower Bound: Geometric Intuition [ITT04] (2/2)

Idea Bound volume(S) by the areas of the shadows S casts
Idea Upper bound on data reuse⇒ lower bound on data

movement

Upper bound on number of operands: M
max(|SA|, |SB|, |SC |) ≤ M
|SA|+ |SB|+ |SC | ≤ M

Upper bound on number of iterations doable given M operands:
|S| ≤ |SA|1/2|SB|1/2|SC |1/2 ≤ M3/2

Data reuse = # iterations/# operands = O(M1/2)

(See [BDHS11] for precise argument.)

words moved ≥ total # iterations/max data reuse = Ω(N3/M1/2)

5

Attaining Lower Bounds — Tiling Matmul (1/3)

for i = 1 : N,
for j = 1 : N,

for k = 1 : N,
C(i , j) += A(i , k) ∗ B(k , j)

j

N

=

A	

 B	

 C	

i i

j

6

Attaining Lower Bounds — Tiling Matmul (1/3)

Suppose M < N.

for i = 1 : N,
for j = 1 : N,

Load C(i , j) . . . N2 loads total
for k = 1 : N,

Load A(i , k) and B(k , j) . . . 2N3 loads total
C(i , j) += A(i , k) ∗ B(k , j)

Store C(i , j) . . . N2 stores total

Words Moved = N2 + 2N3 + N2 = O(N3),

which is suboptimal.

6

Attaining Lower Bounds — Tiling Matmul (2/3)

=

A	

 B	

 C	

7

Attaining Lower Bounds — Tiling Matmul (3/3)

Suppose M < N and block/tile size b|N and 3b2 ≤ M

for i = 1 : N/b,
for j = 1 : N/b,

Load block C(i , j) . . . (N/b)2 block loads total
for k = 1 : N/b,

Load blocks A(i , k) and B(k , j) . . . 2(N/b)3 block loads total
C(i , j) += A(i , k) ∗ B(k , j)

Store block C(i , j) . . . (N/b)2 block stores total

and for the choice b = (M/3)1/2 (assume integer),

Words Moved =

(
N2

b2 + 2
N3

b3 +
N2

b2

)
· b2 = O

(
N3

M1/2

)
,

which is asymptotically optimal.

8

Lower Bounds for Linear Algebra

Theorem ([BDHS11])

Suppose we are given an index set Z ⊂ Z3. Then the “Matmul-like”
program

for (i , j , k) ∈ Z, C(i , j) = C(i , j) +ij A(i , k) ∗ijk B(k , j)

must move Ω(|Z|/M1/2) words.

Under some technical assumptions, this yields lower bounds for
BLAS–3, e.g., A · B, A−1 · B;
One-sided factorizations, e.g., LU, Cholesky, LDLT , ILU(t);
Orthogonal factorizations, e.g., Gram–Schmidt, QR,
eigenvalue/singular value problems;
Tensor contractions, some graph algorithms; and
Sequences of these operations, interleaved arbitrarily.

9

Outline

1 Avoiding Communication in Linear Algebra
Lower bounds for matrix multiplication. . .
. . . attainable by tiling
Lower bounds for linear algebra (. . . attainable?)

2 Beyond Linear Algebra: Affine Array References
E.g., A(i + 2j ,3k + 4)
Extends previous lower bounds to larger class of programs.
Lower bounds are computable.
Matching upper bounds (i.e., optimal algorithms) in special case:
linear algebra, tensor contraction, direct N–body, database join,
etc. (when array references pick a subset of the loop indices)
Ongoing work addresses attainability in the general case.

Generalization: Affine Array References

Given ‘loop iterations’ indexed (i1, . . . , id) ∈ Zd , and parameters

Param. Description Example: Matmul
d dim. of iteration space (rank of Zd) 3
Z iteration space, a subset of Zd {1, . . . ,N}3

Aj ,dj Each dj–dimensional array Aj is
subscripted by Zdj

{A,B,C}, {2,2,2}

φj subscripts φj : Zd → Zdj (affine
combinations of loop indices)

{(i , k), (k , j), (i , j)}

m number of ‘arrays’ (injections into
memory locations)

3

for i = (i1, . . . , id) ∈ Z ⊆ Zd ,

inner_loopi(A1(φ1(i)), . . . ,Am(φm(i)))

10

Lower Bound Strategy for Affine Array References

Proof strategy:
1 For any (finite) set E ⊆ Z of loop iterations that accesses O(M)

operands, find σ such that |E | = O(Mσ).
Matmul: σ = 3/2.

2 Since data reuse = O(Mσ−1), we conclude the program must
move Ω(|Z|/Mσ−1) words.

Matmul: Ω(N3/M1/2) words.

11

Upper Bounds via Hölder-Brascamp-Lieb (HBL) theory

Theorem (Extension of [BCCT10, Theorem 2.4])

For j ∈ {1, . . . ,m}, let φj : Zd → Zdj be a group homomorphism and sj
be a nonnegative number. Then,

for all subgroups H of Zd , rank(H) ≤
m∑

j=1

sj · rank(φj(H)),

if and only if,

for all finite subsets E of Zd , |E | ≤
m∏

j=1

|φj(S)|sj .

12

Lower Bounds for Affine Array References

Theorem (Communication Lower Bound)
A program of the form

for i = (i1, . . . , id) ∈ Z, inner_loopi(A1(φ1(i)), . . . ,Am(φm(i)))

must move Ω(|Z|/M(
∑

j sj)−1) words, where s = (s1, . . . , sm) satisfies

rank(H) ≤
∑

j
sj · rank(φj(H)) for all subgroups H of Zd .

Proof sketch:
Let E be any ‘cache block’; bound data reuse (#iterations/#operands)

1 Operands: maxj |Aj(φj(E))| = maxj |φj(E)| ≤ M
2 Iterations: |E | ≤

∏
j |φj(E)|sj ≤ (maxj |φj(E)|)

∑
j sj

3 Data reuse: O(M(
∑

j sj)−1)⇒ # words moved: Ω(|Z|/M(
∑

j sj)−1).
(See [CDK+13] for precise argument.)

13

A Linear Program to Compute σ (1/2)

We can write the set of inequalities (for subgroups H1, . . . ,Hi , . . . of Zd)
rank(H1) ≤

∑m
j=1 sj · rank(φj(H1))

...
rank(Hi) ≤

∑m
j=1 sj · rank(φj(Hi))

...


as a system of inequalities

rank(φ1(H1)) · · · rank(φm(H1))
...

...
rank(φ1(Hi)) · · · rank(φm(Hi))

...
...

 ·
s1

...
sm

 ≥


rank(H1)
...

rank(Hi)
...

 ,

or more succinctly, as ∆ · s ≥ r .

14

A Linear Program to Compute σ (2/2)

Observation
Any s ∈ [0,∞)m that satisfies ∆ · s ≥ r leads to a valid upper
bound Mσ, with σ = σ(s) =

∑
j sj = 1T s.

Let sHBL denote the smallest σ(s), which leads to the tightest
upper bound Mσ(s), thus the tightest lower bound Ω(|Z|/Mσ(s)−1).

Definition (HBL–LP)

minimize σ(s) = 1T s s.t. ∆ · s ≥ r

Theorem
We can decidably compute sHBL, the minimizing σ(s).

15

Special Case: Subscripts are Subsets of Indices

e.g., A(i , k),B(k , j),C(i , j), subsets of {i , j , k}

Theorem
Suppose every φj projects a subset of the loop indices i1, . . . , id . Let
∆e be the d rows of ∆ corresponding to subgroups Hi = 〈ei〉 for i = 1
to d . then the linear program

minimize 1T s s.t. ∆e · s ≥ 1

yields the same optimum σ(s) as HBL–LP, and furthermore, the dual
linear program

maximize 1T x s.t. ∆T
e · x ≤ 1

gives the optimal block size Mxi for each loop.

Note: In practice, we only need to solve the dual: 1T x = 1T s = sHBL. 16

Special Case: Example 1/3: Matmul

Original code:

for i = 1 : N, for j = 1 : N, for k = 1 : N,
C(i , j) += A(i , k) ∗ B(k , j)

Now we write down and solve the linear program

maximize sHBL = 1T x s.t. ∆T
e · x ≤ 1

∆e =


i j k

A 1 0 1
B 0 1 1
C 1 1 0

 ⇒ x =

1/2
1/2
1/2

 ⇒ sHBL = 3/2

17

Special Case: Example 1/3: Matmul

Corollary
For any execution of the code, the number of words moved is
Ω(|Z|/MsHBL−1) = Ω(N3/M1/2), and this is attained by blocks of size
M1/2–by–M1/2–by–M1/2 in the following code (b = M1/2).

for i1 = 1 : b : N, for j1 = 1 : b : N, for k1 = 1 : b : N,
for i2 = 0 : b − 1, for j2 = 0 : b − 1, for k2 = 0 : b − 1,

(i , j , k) = (i1, j1, k1) + (i2, j2, k2)
. . . // inner loop with index (i , j , k)

The block sizes may have to be smaller by a constant factor, e.g.
bi = (M/m)xi = (M/3)1/2, to fit in cache simultaneously.

17

Special Case: Example 2/3: N–body

Original code:

for i = 1 : N, for j = 1 : N,
F (i) += compute_force(P(i),P(j))

Now we write down and solve the linear program

maximize sHBL = 1T x s.t. ∆T
e · x ≤ 1

∆e =


i j

F 1 0
P1 1 0
P2 0 1

 ⇒ x =

(
1
1

)
⇒ sHBL = 2

18

Special Case: Example 2/3: N–body

Corollary
For any execution of the code, the number of words moved is
Ω(|Z|/MsHBL−1) = Ω(N2/M), and this is attained by blocks of size
M–by–M in the following code (b = M).

for i1 = 1 : b : N, for j1 = 1 : b : N,
for i2 = 0 : b − 1, for j2 = 0 : b − 1,

(i , j) = (i1, j1) + (i2, j2)
. . . // inner loop with index (i , j)

The block sizes may have to be smaller by a constant factor, e.g.
bi = (M/m)xi = M/3, to fit in cache simultaneously.

18

Special Case: Example 3/3: Complicated Code

Original code:

for i1 = 1 : N, for i2 = 1 : N, . . . , for i6 = 1 : N,
A1(i1, i3, i6) += func1(A2(i1, i2, i4),A3(i2, i3, i5),A4(i3, i4, i6))
A5(i2, i6) += func2(A6(i1, i4, i5),A3(i3, i4, i6))

Now we write down and solve the linear program

maximize sHBL = 1T x s.t. ∆T
e · x ≤ 1

∆e =



i1 i2 i3 i4 i5 i6
A1 1 0 1 0 0 1
A2 1 1 0 1 0 0
A3,1 0 1 1 0 1 0
A4,A3,2 0 0 1 1 0 1
A5 0 1 0 0 0 1
A6 1 0 0 1 1 0


⇒ x =



2/7
3/7
1/7
2/7
3/7
4/7


⇒ sHBL = 15/7 19

Special Case: Example 3/3: Complicated Code

Corollary
For any execution of the code, the number of words moved is
Ω(|Z|/MsHBL−1) = Ω(N6/M8/7), and this is attained by blocks of size
M2/7–by–M3/7–by–M1/7–by–M2/7–by–M3/7–by–M4/7 in the following
code (bi = Mxi).

for i1,1 = 1 : b1 : N, . . . , for i1,6 = 1 : b6 : N,
for i2,1 = 0 : b1 − 1, . . . , for i2,6 = 0 : b6 − 1,

(i1, . . . , i6) = (i1,1, . . . , i1,6) + (i2,1, . . . , i2,6)
. . . // inner loop with index (i1, . . . , i6)

The block sizes may have to be smaller by a constant factor, e.g.
bi = (M/m)xi = (M/6)xi , to fit in cache simultaneously.

19

Extending to Other Machine Models

Our lower bounds extend to more
complicated machines:

Multiple levels of memory:
apply lower bound to each
pair of adjacent levels
Homogeneous parallel
processors: |Z|/P work per
processor
Hierarchical parallel
processors
Heterogeneous machines:
optimization problem to
balance |Z| work

SLOW	

FAST1	

FAST2	

FAST3	
 LOCAL	

LOCAL	
 LOCAL	

LOCAL	
 LOCAL	

20

Optimal Parallel Algorithms (1/2)

Sequential tiling suggests parallel ‘working sets.’
Optimal parallel algorithms for ‘special case’ and Z = Nd :

Partition domain into tiles of size N/Mx1–by–· · · –by–N/Mxd

While there are unexecuted tiles
Assign unexecuted tiles to P processors
Communicate the data to each processor
Execute tiles

tiles per processor︷ ︸︸ ︷ m∏
j=1

Nd

Mxj

 · 1
P
·

words moved
per tile︷ ︸︸ ︷
O(M) =

words moved
per processor︷ ︸︸ ︷

O
(

Nd

PMsHBL−1

)
,

attaining the lower bound of Ω((|Z|/P)/MsHBL−1).

21

Optimal Parallel Algorithms (2/2)

How much of the machine’s memory should you use?

M each processor’s working set size
Mcap each processor’s memory capacity
Marr total storage required for arrays, |

⋃
j Aj(φj(Z))|

Marr

P
≤ M ≤ min

(
Mcap,

(
|Z|
P

) 1
sHBL

)

Lower bound on M: store all arrays (across machine)
Upper bounds on M:

working sets must fit in processors’ memories
load balance (need at least P tiles)

(‘N.5D algorithms’) Writing M = CMarr/P, it is beneficial to use up

to C ≤
(
|Z|

1
sHBL

Marr

)
P

sHBL−1
sHBL copies of the data (Matmul: C ≤ P

1
3)

22

Ongoing Work: Optimal Algorithms

Goal: generalize duality argument beyond “special case”
Goal: bound constants hidden in ‘big-O’

N–body: O(M2) particle-particle interactions

Access φ1 = i , φ2 = j

This tiling is optimal.

23

Ongoing Work: Optimal Algorithms

Goal: generalize duality argument beyond “special case”
Goal: bound constants hidden in ‘big-O’

N–body: O(M2) particle-particle interactions

Access φ1 = i − j , φ2 = i + j

This tiling is suboptimal.

23

Ongoing Work: Optimal Algorithms

Goal: generalize duality argument beyond “special case”
Goal: bound constants hidden in ‘big-O’

N–body: O(M2) particle-particle interactions

Access φ1 = i − j , φ2 = i + j

This tiling is optimal. Note:
two sets of tiles
generalizes to arbitrary
linear combinations of i
and j
group theory reveals
the optimal tiling

23

Ongoing Work: Data Dependencies

Partial order on Z encoded as DAG
Some sets E are inadmissible (cannot be blocked)

Question
Can we tighten our bound |E | ≤

∏
j |φj(E)|sj for admissible sets?

Question
Can we extend our parallel theory to expose tradeoffs between:

Concurrency, efficiency, memory, communication, . . .

24

Ongoing Work: Cost Model

Only discussed communication volume (bandwidth cost).
Extend model to address

Messages/synchronizations (latency cost)

Claim
Message size 1 ≤ w ≤ M words, so a latency lower bound is

d# words moved/we = Ω(|Z|/(wMsHBL−1)) = Ω(|Z|/MsHBL) messages.

Energy/power costs
Network topology, congestion

25

Conclusions

Communication is slowing you down!
Lower bounds motivate new/improved algorithms

Previous work: Matmul [HK81, ITT04], linear algebra [BDHS11]
This work: programs with affine array references

Goal: Compiler generates communication-optimal code
Tech. report [CDK+13] at bebop.eecs.berkeley.edu, or

http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-61.pdf

Thank You

26

http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-61.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-61.pdf

References I

J. Bennett, A. Carbery, M. Christ, and T. Tao.
Finite bounds for Hölder-Brascamp-Lieb multilinear inequalities.
Mathematical Research Letters, 17(4):647–666, 2010.

G. Ballard, J. Demmel, O. Holtz, and O. Schwartz.
Minimizing communication in numerical linear algebra.
SIAM Journal on Matrix Analysis and Applications, 32(3):866–901, 2011.

M. Christ, J. Demmel, N. Knight, T. Scanlon, and K. Yelick.
Communication lower bounds and optimal algorithms for programs that reference arrays — part I.
Technical Report UCB/EECS-2013-61, Department of Electrical Engineering and Computer Science, University of
California, Berkeley, April 2013.

J.-W. Hong and H.T. Kung.
I/O complexity: the red-blue pebble game.
In Proceedings of the Thirteenth Annual ACM Symposium on Theory of Computing, pages 326–333. ACM, 1981.

D. Irony, S. Toledo, and A. Tiskin.
Communication lower bounds for distributed-memory matrix multiplication.
Journal of Parallel and Distributed Computing, 64(9):1017–1026, 2004.

L.H. Loomis and H. Whitney.
An inequality related to the isoperimetric inequality.
Bulletin of the American Mathematical Society, 55:961–962, 1949.

27

	Avoiding Communication in Linear Algebra
	Lower bounds for matrix multiplication…
	…attainable by tiling
	Lower bounds for linear algebra (…attainable?)

	Beyond Linear Algebra: Affine Array References
	E.g., A(i+2j,3k+4)
	Extends previous lower bounds to larger class of programs.
	Lower bounds are computable.
	Matching upper bounds (i.e., optimal algorithms) in special case: linear algebra, tensor contraction, direct N–body, database join, etc. (when array references pick a subset of the loop indices)
	Ongoing work addresses attainability in the general case.

